193 research outputs found

    Topological pressure of simultaneous level sets

    Full text link
    Multifractal analysis studies level sets of asymptotically defined quantities in a topological dynamical system. We consider the topological pressure function on such level sets, relating it both to the pressure on the entire phase space and to a conditional variational principle. We use this to recover information on the topological entropy and Hausdorff dimension of the level sets. Our approach is thermodynamic in nature, requiring only existence and uniqueness of equilibrium states for a dense subspace of potential functions. Using an idea of Hofbauer, we obtain results for all continuous potentials by approximating them with functions from this subspace. This technique allows us to extend a number of previous multifractal results from the C1+ϵC^{1+\epsilon} case to the C1C^1 case. We consider ergodic ratios Snϕ/SnψS_n \phi/S_n \psi where the function ψ\psi need not be uniformly positive, which lets us study dimension spectra for non-uniformly expanding maps. Our results also cover coarse spectra and level sets corresponding to more general limiting behaviour.Comment: 32 pages, minor changes based on referee's comment

    Press shaping of arched components by means of a mobile tool

    Full text link
    The best tool motion in a press is considered, when producing U-shaped components from sheet. The elastoplastic properties of the deformed material are taken into account. © 2013 Allerton Press, Inc

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure

    Fast numerical test of hyperbolic chaos

    Full text link
    The effective numerical method is developed performing the test of the hyperbolicity of chaotic dynamics. The method employs ideas of algorithms for covariant Lyapunov vectors but avoids their explicit computation. The outcome is a distribution of a characteristic value which is bounded within the unit interval and whose zero indicate the presence of tangency between expanding and contracting subspaces. To perform the test one needs to solve several copies of equations for infinitesimal perturbations whose amount is equal to the sum of numbers of positive and zero Lyapunov exponents. Since for high-dimensional system this amount is normally much less then the full phase space dimension, this method provide the fast and memory saving way for numerical hyperbolicity test of such systems.Comment: 4 pages and 4 figure

    Weak chaos detection in the Fermi-Pasta-Ulam-α\alpha system using qq-Gaussian statistics

    Full text link
    We study numerically statistical distributions of sums of orbit coordinates, viewed as independent random variables in the spirit of the Central Limit Theorem, in weakly chaotic regimes associated with the excitation of the first (k=1k=1) and last (k=Nk=N) linear normal modes of the Fermi-Pasta-Ulam-α\alpha system under fixed boundary conditions. We show that at low energies (E=0.19E=0.19), when the k=1k=1 linear mode is excited, chaotic diffusion occurs characterized by distributions that are well approximated for long times (t>109t>10^9) by a qq-Gaussian Quasi-Stationary State (QSS) with q1.4q\approx1.4. On the other hand, when the k=Nk=N mode is excited at the same energy, diffusive phenomena are \textit{absent} and the motion is quasi-periodic. In fact, as the energy increases to E=0.3E=0.3, the distributions in the former case pass through \textit{shorter} qq-Gaussian states and tend rapidly to a Gaussian (i.e. q1q\rightarrow 1) where equipartition sets in, while in the latter we need to reach to E=4 to see a \textit{sudden transition} to Gaussian statistics, without any passage through an intermediate QSS. This may be explained by different energy localization properties and recurrence phenomena in the two cases, supporting the view that when the energy is placed in the first mode weak chaos and "sticky" dynamics lead to a more gradual process of energy sharing, while strong chaos and equipartition appear abruptly when only the last mode is initially excited.Comment: 12 pages, 3 figures, submitted for publication to International Journal of Bifurcation and Chaos. In honor of Prof. Tassos Bountis' 60th birthda

    Delocalization of slowly damped eigenmodes on Anosov manifolds

    Full text link
    We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a "strip" of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two reference

    Generalised dimensions of measures on almost self-affine sets

    Full text link
    We establish a generic formula for the generalised q-dimensions of measures supported by almost self-affine sets, for all q>1. These q-dimensions may exhibit phase transitions as q varies. We first consider general measures and then specialise to Bernoulli and Gibbs measures. Our method involves estimating expectations of moment expressions in terms of `multienergy' integrals which we then bound using induction on families of trees

    Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

    Full text link
    In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to H\"older continuous potentials.Comment: 33 pages, 6 figure

    A review of linear response theory for general differentiable dynamical systems

    Full text link
    The classical theory of linear response applies to statistical mechanics close to equilibrium. Away from equilibrium, one may describe the microscopic time evolution by a general differentiable dynamical system, identify nonequilibrium steady states (NESS), and study how these vary under perturbations of the dynamics. Remarkably, it turns out that for uniformly hyperbolic dynamical systems (those satisfying the "chaotic hypothesis"), the linear response away from equilibrium is very similar to the linear response close to equilibrium: the Kramers-Kronig dispersion relations hold, and the fluctuation-dispersion theorem survives in a modified form (which takes into account the oscillations around the "attractor" corresponding to the NESS). If the chaotic hypothesis does not hold, two new phenomena may arise. The first is a violation of linear response in the sense that the NESS does not depend differentiably on parameters (but this nondifferentiability may be hard to see experimentally). The second phenomenon is a violation of the dispersion relations: the susceptibility has singularities in the upper half complex plane. These "acausal" singularities are actually due to "energy nonconservation": for a small periodic perturbation of the system, the amplitude of the linear response is arbitrarily large. This means that the NESS of the dynamical system under study is not "inert" but can give energy to the outside world. An "active" NESS of this sort is very different from an equilibrium state, and it would be interesting to see what happens for active states to the Gallavotti-Cohen fluctuation theorem.Comment: 19 pages, 2 figure

    Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus

    Full text link
    We consider the "thermodynamic limit"of a d-dimensional lattice of hyperbolic dynamical systems on the 2-torus, interacting via weak and nearest neighbor coupling. We prove that the SRB measure is analytic in the strength of the coupling. The proof is based on symbolic dynamics techniques that allow us to map the SRB measure into a Gibbs measure for a spin system on a (d+1)-dimensional lattice. This Gibbs measure can be studied by an extension (decimation) of the usual "cluster expansion" techniques.Comment: 28 pages, 2 figure
    corecore